Moore-Penrose inverse of some linear maps on infinite-dimensional vector spaces
نویسندگان
چکیده
منابع مشابه
On linear vector optimization duality in infinite-dimensional spaces∗
In this paper we extend to infinite-dimensional spaces a vector duality concept recently considered in the literature in connection to the classical vector minimization linear optimization problem in a finite-dimensional framework. Weak, strong and converse duality for the vector dual problem introduced with this respect are proven and we also investigate its connections to some classical vecto...
متن کاملOn Infinite Dimensional Linear Spaces.
Let X be an abstract linear space and let X* be the space of all linear functionals defined on X. Associated with each norm defined on X is its "norm set," the subspace L of X* consisting of those linear functionals which are continuous with respect to it. Our starting point is the observation that two norms in X define the same topology if and only if their norm sets are identical. This observ...
متن کاملMinors of the Moore - Penrose Inverse ∗
Let Qk,n = {α = (α1, · · · , αk) : 1 ≤ α1 < · · · < αk ≤ n} denote the strictly increasing sequences of k elements from 1, . . . , n. For α, β ∈ Qk,n we denote by A[α, β] the submatrix of A with rows indexed by α, columns by β. The submatrix obtained by deleting the α-rows and β-columns is denoted by A[α′, β′]. For nonsingular A ∈ IRn×n, the Jacobi identity relates the minors of the inverse A−1...
متن کاملFast Computation of Moore-Penrose Inverse Matrices
Many neural learning algorithms require to solve large least square systems in order to obtain synaptic weights. Moore-Penrose inverse matrices allow for solving such systems, even with rank deficiency, and they provide minimum-norm vectors of synaptic weights, which contribute to the regularization of the input-output mapping. It is thus of interest to develop fast and accurate algorithms for ...
متن کاملWhen Does the Moore–penrose Inverse Flip?
In this paper, we give necessary and sufficient conditions for the matrix [ a 0 b d ] , over a *-regular ring, to have a Moore-Penrose inverse of four different types, corresponding to the four cases where the zero element can stand. In particular, we study the case where the MoorePenrose inverse of the matrix flips. Mathematics subject classification (2010): 15A09, 16E50, 16W10.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Linear Algebra
سال: 2020
ISSN: 1081-3810
DOI: 10.13001/ela.2020.4979